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ABSTRACT

The nonlinear stress-strain behavior of unidirectional fiber

composite material was examined. Two approaches were adopted. The

first approach considers the stress-strain as nonlinear elastic relations,

which are derived at through the use of a complementary energy density

function, and takes into account the material sym~metry. The s-cond

approach adopts the Ramberg-Osgood representation of one-dimensional

stress-strain curves. By utilizing the deformation theory to express the

nonlinear parts of the strain, a nonlinear stress-strain behavior was

obtained.

An incremental formulation of these theories was implemented in a

finite element analysis. These approaches were examined in the context of

postbuckling analysis of thick-section laminated plates. It is shown that

the nonlinear behavior leads to a stiffness reduction for thick-section

plates. Moreover, the models examined produce a close response for thick

multi-layered laminated plates.
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1. INTRODUCTION

The design of fiber composite laminated structures has grown

rapidly over the last two decades. These laminated anisotropic

structures offer an exquisite alternative to the conventional isotropic

materials due to their light weight to high strength ratio. Therefore,

it is not surprising to find that the most immediate and primary

applications of laminated structures were exclusive to the

aeronautical and aviation industry in the form of thin laminated

plates and shells. However, recently there has been a growing

interest in the design and application of fiber-reinforced composite

materials in the form of thick section plate and shell structures. This

introduces a major concern when using methods of analysis, such as

the classical laminate theory or its modifications, since these methods

assume the presence of a plane stress field in each lamina. However,

in a thick section composite, we verge to a true tridimensional stress

state, especially if a need to analyze stress concentrations or

structural discontinuities arises.

The search for effective and accurate design methods to

analyze laminated structures has led to the use of complex models.

These complexities arise through the consideration of geometric and

material nonlinear behavior. Such models are assumed to produce a

rehiable and accurate design.



Recently, more attention has been directed towards exploring

the effects of nonlinear constitutive behavior in the application of

thermoset, thermoplastic and metal matrix fiber composite systems.

These systems demand the application of a proper nonlinear

constitutive theory. A nonlinear constitutiv.z model can have a

significant effect on the structural design, especially in the presence

of local stress concentrations, such as crack tips, holes and cutouts,

edge effects and structural discontinuities. Hence, it is important to

assess such effects with the proper choice of constitutive relations.

This study is concerned with the formulation of a nonlinear

constitutive model for fiber composite laminates. The nonlinear

behavior of a single lamina, which results from the matrix nonlinear

behavior or from a presence of micro-effects such as micro-cracks

and imperfect fiber matrix interface, is introduced in the lamina's

constitutive model.

In the first part of this report, two major theories and

approaches of nonlinear constitutive models are examined and

reviewed in a detailed manner. In the second part, an incremental

formulation of the above theories is implemented. A nonlinear finite

element analysis is performed to examine the above theories in the

context of postbuckling analysis of thick section laminated plates.

Discussion and recommendations follow.
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2. LITERATURE REVIEW

2.1 Nonlinear Behavior of Fiber Composite Laminates

It has beent well recognized that different fiber composite

systems exhibit some form of nonlinear stress-strain behavior. One

source of nonlinearity can be related to the matrix material, such as

viscoelastic behavior in polymeric matrices or plasticity in metal

matrices. Another source of nonlinearity can result due to micro-

structural characteristics, such as micro-cracks or imperfect interface

between the fiber and the matrix.

Several levels and approaches can be used in modeling the

nonlinear behavior of fiber composites. A micromechanics approach

can be obtained by modeling the micro-structure of the fibers and

matrix inclusion in some form of periodical array subject to different

states of stress and strain, Adams [1]. Another approach is to

consider the nonlinear responses of a homogenized anisotropic

lamina and to examine the nonlinear responses for the one

dimensional average transverse stress and/or for the axial shear,

while the stress-strain relation in the fiber direction remains linear.

Finally, interaction terms of multiaxial stress states can be formed

through the use of a potential stress function to describe the

nonlinear parts of the strains, such as the stress energy density

function or the deformation theory of plasticity.
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i1ahin et al [21 formulated and used this approach wherc'y

they characterized the nonlinear stress-Arain relations in a

Ramberg-Osgood representation for the one dimensional average

transverse and axial shear stress-strain relations. Moreover, they

used the deformation theory of plasticity to form nonlinear

constitutive relations which included an interaction term between

nonlinear axial shear and transverse stresses.

Smith and Rivlin f31 considered a nonlinear polynomial form of

the stress or strain energy density function, in which they reduced

the polynomial basis by employing symmetry conditions on the basis

form and by using some mathematical group theorems. It should be

noted that this approach included major crystal classes of anisotropy.

The key idea in applying the above approach to anisotropic

materials, is to extend the symmetry that a material exhibits in its

crystallographic form to anisotropic bodies that are not crystals, but

have a micro-structura: symmetry, which results from the fiber

periodic positioning in its inclusion, disregards the matrix or fiber

materials.

Hlahn and Tsai 141 followed this approach and considered the

axial shear nonlinear behavior in a composite lamina under a plane

stress state. They used a complementary elastic energy density

function and imposed transverse-isotropy symmetry conditions to

generate a nonlinear elastic constitutive relation. The interaction
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terms between the shear nonlinear stress and other stress

components were neglec~ed in this formulation.

The theories of Hashin et al and Smith and Rivlin are reviewed

and implemented in an incremental nonlinear finite element analysis

in the following chapters.

2.2 Postbuckling Analysis of Laminated Plates

A flat plate subject to membrane forces remains flat provided

these forces are small. By increasing the applied forces the flat plate

becomes unstable and tends to deform in such configurition to allow

small lateral displacements. These loads are the critical or buckling

loads. If the loads are increased more, the plate establishes a stable

configuration which allows bending due to membrane forces. The

plate is then said to be in the postbuckling range and a stiffness

reduction will occur, but the plate can still resist the increasin-

applied loads.

2.2.1 Nonlinear Analysis of Thin Laminated Plates

The involvement of geometric nonlinearity along with

laminated plate theory makes it a tedious, if not impossible, task to

generate close form solutions in the postbuckling range. The

postbuckling formulations of thin flat plates involve the use of

equilibrium equations written in the current deformed configuration,

along with some Airy type function generating equilibrium
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conditions in terms of the membrane forces. A second nonlinear

equation is derived from the compatibility condition to form a set of

two coupled nonlinear partial differential equations (FDE). This

formulation of governing postbuckling equations for thin flat plates

is introduced in Appendix B. These nonlinear PDE's can be solved

approximately through the use of a truncated double Lourier series to

generate a set of nonlinear algebric equations.

1his approach was used by [51 to solve a postbuckling of

orthotropic rectangular plate with all-clamped or all-simply

supP•orted edges. Also (61 considercd a postbuckling of

symmetrically laminated plates with the same boundary conditions

as 151.

2.3.2 Nonlinear Analysis of Thick Composite Laminate

The analysis of thick section laminated plates and shells

includes the account for transverse shear which becomes an

important factor as the depth to length ratio increases. The

transverse shear included by the Reissner-Mindlin plate theory

offers a better alternative to the Kirchhoff plate theory. Postbuckling

analysis of thick composite laminates was considered by 17,8]. Both

Kirchhoff thin plate and Mindlin thick plate were analyzed. It

indicates that the transverse shear reduces the buckling loads,

moreover, the postbuckling stiffness is also reduced by including the

transverse shear effects. The major assumption, in the nonliaear

range, of both Kirchhoff and Mindlin type plate theories is the
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existence of small strains and large in-plane rotations. The

independent interpolation of the rotations, in the x and y directions,

trom the transverse deflection in Mindlin plate theory makes it a

difficult task to formulate the governing postbuckling eaq11tions. The

finite element method of Mindlin type c!ýI.,,ents offer an attractive

method for the solution of postbuckliig analysis of laminated plates.

Finally, it is important to notice that various combined

experimental and numerical studies were performed to validate the

thin laminated plate theory in uniaxial compression over the

posthuckling range [9]. To the knowledge of the authors, no biaxial

compressive experimental and numerical study was conducted to

verify the theory.
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3. NONLINEAR CONSTITUTIVE MODELS OF FIBER COMPOSITE

LAMINATES

The unusual shear behavior in thermoset fiber composites and

matrix nonlinearity in thermoplastic composite systems led to a

concern to assess the nonlinear behavior through a suitable

formulation of constitutive model and through the examination of

such nonlinear effects on the structural responses.

In this chapter, two major theories are reviewed and examined.

The first theory considers the stress-strain behavior as a nonlinear

elastic. A complementary energy density function is formed and

various classes of anisotropic symmetry are imposed on its

polynomial basis. The result is a simplified reduced polynomial

basis, which a nonlinear constitutive model can be derived from. The

second approach used the deformation theory of plasticity and the

Ramberg-Osgood characterization of a nonlinear stress-strain

relation. These constitutive models are both implemented for the

AS4/J polymer composite material.

3.1 Anisotropic Elastic Constitutive Model

3.1.1 Strain Energy and Complementary Energy Density Functions

When given a perfectly elastic body, there exists an elastic

strain energy function per unit volume, W, of the undeformed body.
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This function is a single-valued function of the strain tensor such

that

Gij =I - 1o oe o _or2= ýaej + aaeji o r Deij(1)

where W = W(eij) = W(uij) (2)

The complementary energy density function W* can be defined
through

W(eij) + W*((yij) == (Yij eij (3)

It is important to notice that under symmetry operations aij eij

remains invariant. Hence, one can choose a representation of the

constitutive model through W or W*.

3.1.2 Polynomial Representation of Strain Energy Function

Assuming that the strain energy function is analytic in its

arguments, it can be represented as

W (eii) = 2 Wr(eij)

T= 1 (4)

Where Wr is a homogeneous function of the degree r
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Wr(Xeij) = XrW(eij) (5)

Obviously it is impossible to consider infinite terms of Wr.

Hence, a truncated cubic approximation will be used. It can be

written as

W = W. + Cij eij + Cijk] eij ek]+ - Cijklmn eij eki (6)

Where W. is an arbitrary constant and Cij is an initial stress

tensor. It is easy to notice that a quadratic form of W yields linear

constitutive relations.

3.1.3 Material Symmetry

If the anisotropic material is considered to be homogeneous

and possesses symmetry due to the fibers positioning, certain

iestrictioas can be imposed on the polynomial basis of W. Given that

Xi and Xi are two equivalent symmetric orientations, one can write

W(eij) = W(eij) = W(aik aj, ekl) (7)

an d aij = cos(xi, xj)

Next, we will define some basic symmetric transformation

operators
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I -- Identity transformation.

-I -- Inverse transformation.

R i-- Reflection of the i-th axis, xi =-xi.

Sio.a Right-handed rule rotation through cc degrees around the

axis in the direction of the normal n.

These symmetric operators will be used to define some basic

crystalline systems.

Triclinic System (I, -I)

The identity and inverse transformations do not effect the

stress or strain tensors. Hence, there can be no restrictions placed on

the polynomial basis of the strain energy function.

W(eij) = W(ell, e22, e33, el2, e23, e 1 3) (8)

Monoclinic Symmetry

For material having Monoclinic symmetry, the transformation

operators defining this symmetry are

1, -1, S i 3 ,r 1 ( 9 )

The first two operators do not effect the form of the polynomial

basis. The rotation of the cartesian coordinate system in 7E degrees

around the X3 axis yields
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e2 3 = -e23 and e 1 3 = -e 23  (10)

Hence, the - .nitation imposed on the form of the strain energy

function is

W(ell, e22, e33, el2, e23, e13) = W(ell, e22, e33, -e23, -e13) (11)

This will create two sets of variables which the polynomial

basis is symmetric in

(a,, a2) = (e23, e13) and (b1 , b2 ) = (-e23, -e13) (12)

Applying group theorems (1) and (3) in appendix A to produce

a polynomial basis for W in the form

W = W(J 1, J2 , J 3 , J 4 , K1 , K2, K11, K12 , K22) (13)

Where Ji are the invariant quantities under the above

transformation, and

K1 = K2 =0

KII = e 3 , K 12 = el3 e23, K 2 3 =e23  (14)

The reduced polynomial basis of the strain energy is
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W = W(ell, e22, e33, e12, e13, e23, e13 e23) (15)

Orthotropic Symmetry

A material having three mutually orthogonal planes of

symmetry is called orthotropic material. The basic symmetry

operators are

1, -1, S iIXr, S i2 X/, S i3, nt ( 1 6 )

The first three operators were applied to produce Equation

(15), applying the fourth operator yields

e 12 = -e12 e23 = -e23 (17)

The symmetry limitation imposed on W in equation (15) will

be

W(ell, e2 2, e33, e 12 , e23 , e23 , el3 e2 3) =

W(e 11 , e22, e33, -e12 , e23, e23 , -e1 3 e23) (1 8)

We can identify two sets of variables which the polynomial

basis is symmetric in

(at, a2) = (e12, el3 e23) and (b1 , b2) = (-eI2, -el3 e23) (1 9)
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Using group thecrems (1) and (3) in appendix A, the

polynomial basis of W is

W = W(J1 , J 2 , J 3 , J4 , J5, K1, K 2 , Kll, K 12 , K2 2 ) (20)

Where Ji are the transformation invariants, writing Ki and Kij

K1 = K2 =0

K11 =e22 , K 1 2 = e1 2 e1 3 e2 3 , K 2 2 =e13 e23  (21)

Hence,

W = W(eii, e22, e33, e22, e23 , e13, e12e13e23) (22)

Applying Si'l, will not effect the form of W because if there are

two ort'ogonal symmetric planes the third orthogonal plane is also

symmetric.

Transverse Isotropy

A composite unidirectional fibrous reinforced material aligned

in x3 direction, in which the xI x2 plane is compsoed of a hexagonal or

random array of fibers, is said to have a transverse isotropic

symmetry. The basic symmetric operators are

I, -1, RI, Si36a (a - arbitrary) (23)
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For an arbitrary rotation of the coordinate system around x3

axis, the new coordinate system can be expressed as

X i = aij Xj (24)

An alternative representation of (24) is

X' + iX =e-ix (Xi + iX 2), X1 =X 3  (25)

Can show

e'l 1 + e22 = el I + e22

e33= e33

(26)

e',I - e22 + 2i'12 = e-2 ia (e I - e 22 + 2i e12 )

e13 + ie'2 3  = e-i (e13 + ie23)

We can identify the following invariants

J1 = elI + e22 J2 = e2l + 63 J3 = e33 (27)

If we define the quantities

15



El = ell - e22 F, = e13 - e"223

E2 = 2e 12  F2 = 2 e13 e23  (28)

From the transformation, can show

El = E1 cos 2cx + E 2 sin 2ax

E2 = E 2 cos 2cx - E1 sin 2cc

(29)

F1 = F1 cos 2oc + F2 sin 2o0

F2 = F2 cos 2cc - F1 sin 2oc

Symmetry requirement imposed on the form of W, can be

stated as

W(J 1 , J2, J3, El, E2, F1, F2) = W(J1 , J2, J 3, El, E 2, Fl, F2) (30)

Applying group theorem (2) in Appendix A, where the vectors

)an d 1are

cxt 1) = (El, E2 ) O!2) = (Fl, F2) n(31)

The invariant forms due to the above orthogonal

transformation are

16



(P)(P) "= E + E 2 =J 1 -4J 4

2= 22

= E1F1+ E 2F2  2 J210•i (32)

(X2) (2) F +F 2 = 2J5 +J0 2- 2J 3J4

A = EIF 2 - E 2F1

Where J1, J2, J3 are defined in (27) and

J4 = el I e22 - e212

J5 = Ieijj (33)

W can be expressed in the polynomial basis as

W =W(J1 , J 2 , J 3 , J 4 , J 5 ) (34)

Assumptions and Simplifications

Consider a transversely isotropic material where x, coincides

with the fibers direction. If the given lamina is to be considered in a

state of plane stress, the form of W will be considerably simplified as

W = W(e11 , e22, e12) (35)

17



The same argument can be made with the complementary

stress energy density function, using the relation (3)

W* = W*(o 1, 02, o6) (36)

An approximated fourth degree of W* can be written as

S= 1 822 022 + S 12 01 02 + S66 06+

2 2 2

1s1 S +1 S222 02 + S112 21 (2 + S122 TI o2 +
3 1 3

S(37)

47 4y y

S 5 6 6 6 6 64 + 51112 03 02 + 51122 12 02 +
4

S1222 y1 02 + S1166 02 02 + S2266 02 06 + S1266 01 02 (2

According to Hahn and Tsai [4], the interaction terms between

cy, a n d 06 or 02 an d 06 are neglected for the material they

experimented with. It has been shown that an important effect is

produced on the resolved transverse stress in a uniaxial test for a

wide range of fiber orientations. Hence, the only effect considered

by their model was the effect of shear stress nonlinearity without

any interaction terms which may involve other stress components in

the form of W*.

18



Finally, the complementary energy density function is reduced

to

S 22 2 S12 a 1 2 +1 866 62+4-L S6666 6
2 12 2 4 (138)

Note that the shear components appea, separately in their

powers and that there are no interaction terms. Also, the only

nonlinearity is in the axial shear. The constitutive stress-strain

relations can be derived from

a W*
eij - a Gij (3 9 )

3.2 Deformation Theory and Ramberg-Osgood Representation

Deformation type nonlinear stress-strain relations can be

represented in the form

eij = 8ijkl aTkl (40)

Where Sijk] is a function of the average stresses or the proper

stress invariants. If the material ii transversely isotropic, and the

fibers are alligned in the x, direction, the stress invariants are

obtained in Equations (27) and (33). It is convenient to express the

strain tensor into a linear elastic part eie and a nonlinear strain part ePi

such that

19



eij =eij + e•j (41 )

it follows

Sijkl = Scijkl + SPikl (42)

where

ijkl = ijkl PJI J2 ,J3,J4 ,J 5 ) (43)

Consider a thin lamina in a state of plane stress, the effective

nonlineaw compliances are a function of the three average plane-

stress components

S P2ijkl = S-ijk]( 11022(22) (44

The nonlinear stress-strain relations are

e --= SPI ITl + S'• 2 022

aP + (45e22 = SPI 2 'al1 +s22022 (45)

e12 = S6 6 G12

For unidirectional fiberous reinforced materials, the fibers

direction is clearly stiffer thaa the matrix. Therefore, the a'verage

stress 0 n can be assumed to be carried by the fibers. The other

20



stress comnonents 022 and 012 are carried by the matrix and give the

nonlinear behavior. The only nonlinear parts of the compliance

tensor are

2 S22 (c 2 2,o1 2) and = S66(o 22 ,o1 2) (46)

Next, one dimensional representation of nonlinear stress-strain

relations in Ramberg-Osgood form are

e22= e2 2 +e2 2 -e 22 - + (y 2 M-1

(47)
e 1 2 =e 2 +eP12=-G12[ + (q12)N-1]12 1 2 G 12 L , Y!

Where E2 is the transverse elastic Young's modulus and G1 2 i s

the axial elastic shear modulus. The parameters Gy ty, M,N are curve

fitting parameters.

3.2.1 J, - Deformation Theory

The basic assumption of the deformation theory of plasticity,

for isotropic materials, is that the plastic strains can be represented

= f(J 2 ) Sij (48)

Where S, is the deviatoric stress and J2 is its second invariant

21



Sij = Gij - I- (kk~ij

(49)

J2  
SijSij

2 '

Similarly, we can generalize this to anisotropic materials by

assuming that

e f =(L) Sij (50)

Where L is a general quadratic function of the stress invariants.

Consider a state of plane stress, the invariant forms resulting from

symmetry consideration are

Y1 1 , 0 2 2 , G1 2  (51)

Assuming that the stress all does not produce any plastic

strain since it is mainly carried by the fibers, L is a quadratic

function of ( 2 2 and Y12

L = L (a22,2 2) = 022 2 + P 202 2  (52)

Note that there is nothing fundamental in the assumption of

the general quadratic form in Equation (50). Next, we can determine

the coefficients cc, P3 from a comparison of the nonlinear one

dimensional stress-strain relations with the Ramberg-Osgood stress-

strain representation.
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A Ramberg-Osgood representation of one dimensional

transverse stress

P CV022 [ (Y22) ]M-1

e22 = SP22 ( 2 2 ) (22 = E2 (y 1(53)

or
or~ P 22 [iG022 2 1 M 1

e22 = - cry 2
E 2 L~oy1 (54)

From the deformation theory, the nonlinear part of the

transverse strain is

e22 f22 (L) - '22 f 2 2 (a2 a2 2 )eP=E2 f2L--E-22 (55)

Comparing Equations (54) and (55) leads to

a2 = IL and f22 =L12

G2 (56)

The function f 22 is the quadratic form L to the (M-l)/2 power.

Similarly, in the case of one dimensional 0 12, the nonlinear

strain in the Ramberg-Osgood form is

e'12 = sP 6 (02 2) F12 = GI2 [ 2 y N5

From the deformation theory, the nonlinear shear strain is
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P a12  (p2 f (y 2~
e12 = f 6 6 (L)= 2 f66 2 812)G,12 G 1 (58)

Comparing Equations (57) and (58), it follows that

32= and f66 =L•
TY, (59)

Finally, the nonlinear compliances can be expressed as

SP_ (a 2 2 (fa)1~

226 = (Y2 +P(IY 1 2) 1N2 1

66=1 [(u 2+ ((60)

where (X2 _P 12 =

The parameters ay, M and ty,N respectively are curve fitting

parameters for the Ramberg-Osgood representation of stress-strain

curves in a one dimensional case.

It follows that the nonlinear plane stress-strain relations are

ellI = --L- (511 - * 13"(22

El El

e22 = - 011 +-2 [:-,y2 2+El E2 TY(61)

•~~~a 2 2+1N•-!
C12 tl+f(ga22)2 +a 2'~1

e12 - G 12  Gy Y
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4. FINITE ELEMENT FORMULATIONS

The objective of this chapter is to describe the finite element

method used to solve nonlinear structural systems. The well known

virtual work principal is used as a 'weak form' to derive the

equilibrium equations

BT a dv - P = 0 (62)

Where P is the applied force vector, B is the strain-

displacement matrix assembled in the global structural coordinates

along with the stress vector. Equation (62) can be written as

I(u) = P (63)

Where I is the internal resisting force vector and is a nonlinear

function of the nodal displacements in the case of nonlinear

geometric problems. The representation of the virtual work

expression in Equation (63) can lead to two basic finite element

formulations. The first is the secant stiffness matrix formulation

which relates the total displacement with the total load vector. The

second method is an incremental formulation which defines a

relation between increments of loads and displacements through a

tangent stiffness matrix. This method can be derived by

differentiating Equation (63), it follows that
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K, AU = Ap (64)

where

Kt = Io + (K, + KT+ K2)+ KG

K B- BCBldv

K0 = B~ T CB,,dv

K 1 = J BTcB~1dv (65)

K 2 = IJ BTICBnldv

KG = IV GTM 0Gdv

Note that the matrix K, is nonsymmetric and is a linear function

in the nodal displacements. K. is a constant independent matrix. The

quantity in parenthesis is called the initial displacement matrix and

is symmetric. Different combined incremental-iterative techniques

are used to solve the nonlinear set of algebraic equations (64). The

Newton-Raphson (NR) and its modifications are the most known and

used methods. These methods can be described as

Kt AU'+' = Pn+l - I'1 (66)

Where i is the iteration number and n is the step or increment
i

number. The internal resistance vector In+1 is updated according to

the method used.
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The load increment Pn~l is specified for a fixed load level

method, whereas, in the case of variable NR iterative methods, the

load increment Pn,+ is part of the solution. These methods follow the

structure equilibrium path of a structure initially subject to a given

load pattern Po in the form

P = XPo (67)

were X, is a scalar determined by adding a constraint to the

equilibrium equations.

In order to accurately simulate the decrease in the load and

displacement near limit or bifureation points, where the tangent

stiffness becomes singular, a modified-Riks (11) it,Lrative algorithm

is used to follow the equilibrium path. The basic idea of the Riks

method is moving along the tangent line to the equilibrium path and

searching for an equilibrium point located in the plane orthogonal to

the tangent line.

This study makes use of the ABAQUS finite element code (12)

where the modified Riks method is implemented. The nonlinear

formation is the updated Lagrangian method in which the reference

configuration is updated to an intermediate configuration between

the original and current configurations. Thus, the current and

reference configurations remain close.
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4.1. Element Formulation

The plate element used in the postbuckling analysis is the

isoparametric 8-nodes quadrilateral plate element. It has six

degrees of freedom (D.O.F.) in each node which includes three

displacements and three rotations. The element is based on the

Reissner-Mindlin plate theory. Numerical formulations are more

simple and convenient to implement than the Kirchhoff plate

elements. The theory also accommodates for transverse shear

strains. The continuity requirement is CO continuity due to the fact

that only first order derivatives of the D.O.F. appear in the viitual

work expressions. The displacements and rotations are decoupled.

Hence, the element is mappable and allows modeling of complex

geometries.

The displacement field is

u(x,y,z) = uO(x,y) - ZO,

v(x,y,z) = vo(x,y) - ZOy (68)

w(x,y,z) = w(x,y)

The above displacement field is independently interpolated

within the element

u° = NiUi V° = NiVi W = NiWi

(69)

Ox = Ni~xi Oy = Ni~yi
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The notation used is the index summation on the element

nodes. The nonlinear strain-displacement relations, defined in

appendix B, are applied to the displacement field in (68) and yield

EXX =u° + WX - z 0e

Cyy = Vy + I Wy - z oy

Exy = Uýy + V?x+W,xW,y - Z 0xY- ZOy,x (70)

Exz = W,x - Ox Y

Eyz = Wy - Oy

Both Equations (69) and (70) defines the strain-displacement

matrix B in the form

8CS.' Nj. 0 0 -ZNi~x 0

8_yy[ 0 Niy 0 0 -ZNi,y

y= Ni,y Ni,x 0 -ZNi,y -ZNi,, +

8CXz 0 0 Ni,x -Ni 0

8Cyz. 0 0 Ni,y 0 -Ni (71)

0 0 Wj Njx Ni,x 0 0 r8Ui

0 0 Wj Njy Niy 0 0 Vi

Wj Nj,y Ni~x+

S0 0 Wj Njx Nj,y 0 0 8Wi

0 0 0 0 0 80W,

0 0 0 0 0 L 80yi
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Equation (71) defines linear and nonlinear parts of the strain-

displacement matrix. Again, note the summation over indices i and j

where they represent the element nodes.

4.2 Constitutive Tangent Stiffness

The material tangent stiffness or Jacobian matrix of the

constitutive model relates incremental stresses and strains. It can be

defined as
8Ai(72)

Cij = 8A-i (2

Where Aa, and Aej are the stress and strain incremental vectors.

In the case of material and geometric nonlinearities, the material

model should be formed in an incremental form to accommodate

with the incremental finite element formulations.

Three constitutive models are considered in this study. The

first model, presented in Chapter 3, considers the axial shear

nonlinearity. The incremental form of this model, in a plane-stress

condition, is

{del S11 S12 0 1 d(;l
de2 S12 S22 0 jdo 2• (73)
de6 0 S66+ 3S6666y2 6 do6
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The second model considers uncoupled transverse and shear stress-

strain relations. Its incremental form is

rdeli Sl S12 0 1 [dol

jde2= S12 $22+ 3S 222 2 2 0 dG2  (74)
lde 6J 0 0 S66 + 3S6666o6 d•5d6J

The third model considered in 3.1.4 for coupled transverse and shear

stress-strain in Ramberg-Osgood representation. The incremental

form for this model, in the case of M=N=3, is

Fdel [S1 S12  0 ido,
{de 2} = S12 S22(1 +3c22 6+J2o2) 2S2202(206 ldo2} (75)

0 2S 6 6 202(76  S66(1 + a 2 o2 + 132 6 do6

The Jacobian matrix of this model is not symmetric. This will

invoke unsymmetric equation solves. All these models are in the

materials coordinate system and need to be transformed in the

global structural coordinates for each layer. The relation for the

transverse stress-strain is considered linear and introduced to the

formulation through shear correction factors.

The material considered in this study is AS4/J1 polymer

composite. The stress-strain curves are presented in Fig. 2 and Fig.

3.
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4.3 Imperfection Analysis

In order to generate a solution for plates in the postbuckling

range and to enable the plate to deform in the transverse direction

due to inplane forces, an imperfection technique is implemented in

the finite element model. This method is carried out by either a

perturbation of the model nodes in the transverse direction such that

it will include some of the first eigen vectors in its form, or by

applying small distributed loads in the transverse direction at the

beginning of the analysis.
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5. NUMERICAL RESULTS

5.1 Plate Geometry and Boundary Conditions

This study considers the problem of buckling and postbuckling

analysis of laminated plates. The material constitutive models

developed in Chapter 3 are implemented in an incremental nonlinear

finite element formulation. The plates have a square geometry (L -

300mm) and are subjected to a compressive biaxial in-plane loading.

The laminate stack sequence considered is a quasi-isotropic laminate

10/90/±451n,. The plate edges are constrained to produce a uniform

displacement in the x and y direction respectively. Both in the

buckling and postbuckling analysis a full finite element mesh is used

due to the nonlinear geometry involved. Most of the results are

presented in the form of the applied load, normalized by the plate

critical load, versus end-shortening in the x direction, normalized by

the plate thickness. The effect of stress-biaxiality ratio is studied for

a clamped plate with different aspect-ratios (t/L = 0.02, 0.04, 0.08).

The range of biaxial loading ratios are chosen for the values: 0, 0.5,

1.,2. . For Ny/N.,= 0. this is the case of uniaxial loading.

5.2 Linearized Buckling and Imperfection Analysis

In order to enable the plate to deform in the lateral direction

due to membrane forces, a geometric imperfection is introduced in

the fii,ite element mesh. The first three eigenmodes, derived from
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linearized buckling analysis, are combined in a linear combination

and scaled by some percentage of the plate thickness. It is a well

known fact that plate structures are not sensitive to the form of

imperfection. Nevertheless, a smaller percentage of imperfection

implemented, the more the postbuckling response is close to the real

behavior. One percent of the thickness is chosen to scale the linear

combination of the first three eigenmodes. This will enable the plate

response to be very close to the real perfect structure.

5.3 Materials Models

The fiber reinforced material considered in this study is made

of AS4/J1 thermoplastic matrix. The effective elastic properties of

this composite system are:

Ell = 17.9 x 106 psi, E22 = 0.9 x 106 psi, *12 = 0.313

G12 = G13 = 0.77 x 106 psi, G 2 3 = 0.31 x 106 psi

The nonlinear stress-strain curves for this material, in axial

shear [131 and transverse tensile-compression, are presented in figs.

2-3. The three nonlinear constitutive models developed in Chapter 3

are formulated based on these one-dimensional stress-strain curves.

These models are referred to as model 1, 2 and 3 in the following

discu:sions.
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5.4 Convergence Study

The convergence rate, in finite element analysis of plates,

depends strongly upon the plate aspect-ratio (t/L). A large number

of elements are required to obtain an accurate solution for thick

laminates, especially in the postbuckling range. Hence, the case

study chosen is a clamped plate under biaxial compressior (Ny/Nx =

0.5) with an aspect-ratio of 0.08. Fig. 4 illustrates the rate of

convergence in the prebuckling and postbuckling ranges for n x n

element mesh refinement. Based on these results, the 8 x 8 elements

mesh was chosen in the following analysis. It should be noted at this

stage that there is an enormous amount of computational time

needed for the postbuckling analysis where the malcrial model is

nonlinear. A typical 8 x 8 isoparametric 8-nodes quadrilateral shell

elements modeling a [0/90/±45]5 ,laminated plate require a large

number of Gaussian integration points (2 x 2 x 64 x 40 Gaussian

points). This calculation assumes that each lamina is modeled

through the thickness with one integration point. The material

model would be called about 10,000 times per one iteration! N( ting

that a typical postbuckling analysis requires hundreds of iterations,

one can clearly realize the large amount of computational time

iflvolved. Hence, the stack sequence chosen for most of this study

was 10/90/±451,. A design of thick laminates requires the use of a

1huhlaminat- technique whereby a typical repeating sublaminate

incI udles the material nonlinearities.
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5.5 Effect of Thickness

The laminate aspect-ratio effect on the postbuckling behavior

is studied for 10/90/±45]n, clamped plate under biaxial compression

(Ny/N, = 0, 0.5,.1., 2.). The thickness/length ratios considered are:

0.02, 0.04, 0.08. Figs. 5-8 illustrates the end-shortening curves of

three laminates with different aspect-ratio and different biaxial

loading. It is shown that the postbuckling stiffness decreases, as the

load increases, for large aspect-ratio (t/L = 0.08). This is due to the

growing effect of transverse shear in thick plates. The first nonlinear

material model is plotted along each curve. The nonlinear curves of

plate response with aspect-ratio less than 0.04 do not show a

difference compared to the linear material response. Note the early

separation of the linear and nonlinear curves for t/L = 0.08. This

indicates that there is a difference in the buckling load between the

two models. This shift or separation of curves shows that the

nonlinear plate is more flexible. This flexibility is expressed by

looking at a fixed load level and considering that the corresponding

difference of the displacement is much higher than the difference in

the load for a fixed value of the displacement.

It can be concluded that the more the postbuckling stiffness is

decreasing, the more the effect of material nonlinearities can be seen.

Also, the nonlinear response is associated with large deflections. The

only nonlinear material model considered in the above figures is the

first model which includes the axial shear nonlinearity. The other

models are considered in the following figures for t/L = 0.08.
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5.6 Thick-Section Plates

The three nonlinear models are considered in the analysis of a

thick-section plate (t/L = 0.08) with biaxial loading (Ny/N,, = 0/ 0.5, 1,

2) and stack sequence [0/90/±451,. The end-shortening of the plate

versus the normalized applied load is presented in figs. 9-11. The

plate center deflection is presented in figs. 13 '5. These figures

clearly demonstrate the effect of nonlinear behavior of fiber

composite materials upon the global response of the structure. The

closest nonlinear behavior to the linear response is the nonlinear

axial shear model (model 1). Model 2 and 3 follow in order. This

consistent pattern of behavior can be explained by the fact that

model 2 includes the transverse nonlinear response along with the

nonlinear in-plane shear, in an independent fashion. Model 3

considers both nonlinearities along with interaction terms. It can be

expected that model 3 produces the largest nonlinear effect. The

same conclusion can be drawn from the lateral deflection curves figs.

13-15 for different biaxial loading ratios.

Finally, an additional case of multi-layered thick laminate

[0/90/±45112, is considered. The aspect ratio in (t/L = 0.08) and the

biaxial loading ratio is Ny/NK= 1. The end-shortening postbuckling

response is presented in fig. 16. the lateral displacement behavior is

presented in fig. 17. Both curves indicate that the three nonlinear

models produce a very close response in most of the postbuckling

range. This behavior can be explained by the presence of large
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number of layers of 0' and 900 degree fiber angles. These layers

carry most of the applied loads in the fiber directions. As a result,

the nonlinear strain distribution in the matrix is reduced. Figs. 18-

19 support this observation. In these figures the transverse shear-

stress resultants V,, and VY are presented respectively. The location

of these resultants is the mid-point of the upper right quarter of the

plate. These figures indicate that the nonlinear models do not affect

the stress distribution in the structure as much as producing

relatively large displacements. Also, fig. 20 shows the strain in the

fiber direction of the upper and lower layers at the plate center. It is

shown that the strain in the fiber direction can be considered as a

linear elastic strain with no plastic or nonlinear part.
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6. CONCLUDING REMARKS

The approach utilized in this report was to present two major

theories of nonlinear constitutive models of stress-strain behavior.

The first approach considers the stress-strain as nonlinear elastic

relations, which are derived through the use of a complementary

energy density function and takes into account the material

symmetries. The second approach was to adopt the Ramberg-Osgood

representation of the one-dimensional nonlinear stress-strain curves.

By utilizing the deformation theory as a representation of the

nonlinear parts of the strain, a nonlinear stress-strain behavior was

obtained. The first two models, referred as model 1 and model 2, are

based on the first approach. Model 1 represents the nonlinear axial

shear behavior. In addition, model 2 takes into account the

transverse stress-strain behavior in an independent fashion, The

third model is based on the second approach of deformation theory.

It includes both nonlinear stress-strain relations. Moreover, an

interaction expression was formulated to account for simultaneous

presence of axial shear and transverse stress.

The postbuckling results of thick section laminated plates

indicates that the nonlinear stress-strain behavior has a global effect

on the structural response. The stiffness was reduced and a large

displacement was associated with the structural behavior. The

distribution of the stress resultant in plate seems not to have a major

change compared to the linear response.
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It is important to emphasize that the problems analyzed in this

study do not include any stiess singularities such as matrix cracking,

delamination, holes and cutouts. These local effects can have a

significant inelastic behavior. The question of the effect of nonlinear

constitutive behavior on such local damage modes and structural

discontinuities should be addressed as a continuation of this study.

A comparison of the three models presented yields that the

first model produces the most conservative response. The

interaction terms in the deformation theory model gives a difference

of response than the other models. The structural behavior of multi-

layered thick laminates which are associated with these constitutive

models are very close. This result indicates that the presence of

large numbers of unidirectional layers oriented in different

directions decreases the nonlinear strains by the fact that the fiber

direction can carry most of the applied loads.

Failure criterias were not used in this study. Obviously, the

laminated thick section plate will be damaged in the process of

postbuckling or even prebuckling response. Hence, it is important to

include failure and local effects in a future study.
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APPENDIX A

The following short review covers three mathematical group

theorems. Mathematical discussion and proofs are beyond the

context of this study and can be found in [10].

Theorem (1)

A polynomial basis for polynomials, which are symmetric in

the two sets of variables (a,, a2 , . .... an) and (bl, b2, ..., bn), is formed

from the quantities

Kj 4(aj +b,)

j,k = 1,2,...,n

Kjk = L (aj bk + ak bj)

Theorem (2)

A polynomial basis for polynomials, which are symmetric in

the n vectors ar)=(i,uX2 ... ,aOn)() in n-dimensional space, and which is

invariant under all proper orthogonal transformations, is formed by

the scalar products
(r) (s)

and i,r,s = 1,2,...,n

Theorem (3)
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A polynomial basis for a polynomial in the variables (al,a 2, .... a),

(bIb 2,....,b) and (JI,J2,...,Jk), which is form-invariant under a group of

transformations and (JI,J2,...,Jk) are invariants, is formed by adjoining

to the quantities (JI,J 2 , .. ,Jk) the polynomials in the variables

(al,a 2,...,an) and (b1,b2,...,bn) which are form-invariant under the given

group of transformations.
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APPENDIX B

Postbucking Analysis of Thin Plates

The purpose of the present appendix is to develop the

governing equations for postbuckling analysis of laminated thin

plates. Although in this study the postbuckling analysis was

performed through the use of the finite element method and for

thick and thin plates, it is important to recognize the formulation of

the governing equations for postbuckling analysis and that there are

different ways to obtain approximated solutions, such as the finite

difference method or by a truncated double fourier series method.

In attempting to write the equilibrium equations for

postbuckling of plates, one should write the equilibrium equations in

the current configuration. By transforming these equations to the

original or reference configuration, a set of nonlinear equilibrium

equations can be obtained.

A point occupying the reference configuration is denoted as a

position vector x, this vector corresponds to the position vector k in

the deformed configuration, where

K = Xi + ui (1)

Where ui is the displacement vector. The deformation gradient

tensor is defined as

Fij = axj = 5 ij + ui,j
aX (2)
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The Green strain tensor can be written as

Eij = I(gkjgkj - 5i):= -(Ui - + Uj'i + Uk,iUk,j)2j2" (3 )

Equilibrium in the deformed configuration, with no body forces, can

be expressed as

1i T, dg = 0 (4)

Where Ti and dC are traction vector and element area respectively in

the deformed configuration. The stress measure used is the

symmetric second Piola-Kirchhoff stress which is obtained by

mapping the force transmitted over an element area d- in the current

configuration to the reference configuration

Ti ds = Fij Tj ds = Fij C•jk nk ds (5)

Where Tj is a fictitious stress vector acting over an element area ds,

with a unit outward normal nk, in the original configuration.

Substituting Equation (5) into (4) yields

J Fij 0 jk ds = 0 (6)

Using the divergence theorem

J,(Fijajk),k dv = 0 (7)
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Equation (7) is true for any volume v. The equilibrium equations are

[Fijayjk],k = [(ij +Ui,j ) (Yjk],k = 0 (8)

i = 1,2,3

substituting

uij = eij + wij (9)

Where eij is the linear engineering strain and wij is the skew-

symmetric rotation-tensor

[(8ij + eij + Wij )Gjk],k 0 (10)

Next, we will use the kinimatic assumptions of nonlinear deformation

of thin plates, which are known as the von Kdirmdin theory of plates.

This theory assumes that the strains can be neglected compared with

the rotations. Moreover, for flat thin plates we can neglect the

rotation w12. Introducing these assumptions in Equation (10)

[(8ij + Wij )Gjkl,k = 0 i = 1,2,3 (11)

Writing the set of Equations (11) explicitly, we can show that the

first tow equations, i = 1,2, are reduced to the well known linear

equilibrium equations. The only nonlinear equation is the

equilibrium equation in the Z direction

oopp = 0 , 1,2 (12)

The third equilibrium equation is
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(W,xcxx + W,yCyx + Gzx)x + (W.xO7xY + W yayy + Fzy),y

+ (W,x(Yxz + W,yCFyz + Tzz),z = 0 (13)

Where w is the lateral displacement. Integrating the above

equations in the same fashion as when developing the classical

Kirchhoff plate equations

Npp =0 (14)

Mx X + 2Nx W,xx + 2NxY W,xy

+ Nyy wyy + P = 0 (15)

The nonlinear strains are
xx=U.° + I W,2x + Zkxx

F-yy = voy + 1- W~y + Zkyy
'Z 2 (16)

Exy = uýy + Vx + W,xWy + Zkxy

Where kjare the plate curvatures given by

k= = -wW kyy = -Wyy ky = -2W,xy (17)

The constitutive relations in terms of the generalized gtrains and

stress resultants are the well known relations

(N) = [A B (18)4
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Considering a symmetric laminate, for simplicity, and introducing

Equation (18) into Equation (15) and B = 0

DI W,xxxx + 4D 16 W,xxxy + 2(D12 + 2D 6 6) W,xxyy + 4D26w,xyyy

+ 4D 2 6 W,xyyy + D2 2 W,yyyy = Nxwxx + 2Nxy Wxy +

NY Way + p (19)

Next, we will use force function xV such that the in-plane equilibrium

equations are satisfied

Nx = Vyy Ny =V,xx Nxy = -v'xy (20)

Writing the compatibility equation in terms of the mid-surface

strains

E0xxyy + Eyy,xx - Fxy,xy .Wxy - W'xx W,yy (21)

Introducing (20) into (18) and substituting the reference surface

strains 13 into (21)

A-1 x- 2A-16 1,xxxy + (2A-11 + A-6) 'i,xxyy - 2A-1 'V,xyyy +

A- 1IJ-,yyyY = Wvxy- W, xxWyy (22)

Equations (19) and (22) define a set of coupled partial differential

equations. These are the postbuckling nonlinear equations of thin

laminated plates.
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Fig.1 - Unidirectional fiber composite material.
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AS4/J-POLYMER COMPOSITE
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Fig.2.-.Axial shear stress-strain curve, ref. [131.
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Fig.3.-.Transverse and axial stress-strain curves, ref. [141.
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Fig.4 Convergence study of postbuckling response of clamped plate in
the form of plate end-shortening.
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Fig.5 Effect of laminate thickness on plate postbuckling behavior for

linear and nonlinear fiber composite materials. End-shortening versus

axial load (clamped plate, L.% imperfection, Ny=O).
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Fig.6 End-shortening of laminates with different aspect-ratios for

linear and nonlinear materials.(Clamped plate, 1.% imperfection,

Ny[Nx=0.5).
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Fig.7 Effect of laminate thickness on plate postbuckling behdvivor lot

linear and nonlinear fiber composite materials. End-shortening vctsiu

axial load. (Clamped plate, L.% imperfection, Ny/Nx=l.).
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Fig.8 Effect of laminate thickness on plate postbuckling behavioi lot

linear and nonlinear fiber composite materials. End-shortening veisu,.

axial load. (Clamped plate, 1.% imperfection, Ny/Nx=2).
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Fig.9 End-shortening of thick-section laminated plate for linear and

nonlinear material models. (l.% imperfection, Ny=O, t/L=0.08).
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Fig.10 - End-shortening of thick section laminated plate for linear and

nonlinear material models. (1.% imperfection, Ny/Nx=0.5,t/L=0.08).

59



2.0

1.5

[0/90/+45/-45]s
clamped plate

Z NN-= 2.0
0.08

0.5 Linear
0.5-e-e-e- Model 1

o--e- Model 2
SModel 3

0.25 ,) %,

u/t

Fig.11 - End-shortening of thick-section laminated plate foi li.e.tr and

nonlinear material models. (1.% imperfection, Ny/Nx=2., t/L-t .()
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Fig.12 - Effect of stress-biaxiality ratio on postbuckling response for

linear and nonlinear material models. (1.% imperfection, t/L=0.08).

61



1. /-

1.0

z

[0/9o/+45/-45],
clamped plate
ZýN/N,, = 0.

0.5t/L =0.080.5I

S- - Linear
So-e-e-e-o Model 1
S-e Model 2
S- Model 3

0".0 1.0 )

w/t

Fig.13 Postbuckling load and plate central deflection for th,, ;(,.clion

and different material models. (1.% imperfection, Ny/Nx=O, t/I 0L.08
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Fig.14 - Postbuckling load and plate central deflection for thick-section

and different material models. (1.% imperfection, Ny/Nx=0.5, tfL=0.08).
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Fig.15 - Postbuckling load and plate central deflection for thick !,,ilOl)

and different material models.(1.% imperfection, Ny/Nx=2., t/I.=1)
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Fig.16 -End-shortening of thick-section multi-layered plate for linear

and nonlinear material model (Clamped plate, l.% imperfection, Ny/Nx-

1.).
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Fig. 17 Lateral deflection of multi-layered thick plate for different

material models. (Clamped plate, 1.% imperfection, Ny/Nx=l., t/L=0.08).
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Fig. 18 - Transverse shear behavior in a clamped [0/90/+45]izs plate

under biaxial compression.

67



0.25 - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

[I 10/90/+45/-45]12,
0.23 clamped plate

Nl/Ne = 1.0
t/ L = 0.08

0.20
•"'• Linear

C-3-9~-O- Model 1
0.18 c:--, Model 2

St. - Model 3

0.15

x0.13

).. 10

0.08

0.05

0.03

0 .OQQQ 0.5 1.0 1.5 2.0

Nx/Nxcr

Fig.19 Transverse shear behavior in a clamped [0/90/±+4 5 ]12s plate

under biaxial compression.
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Fig.20 Axial strain behavior of the top and bottom layers at the plate

center.
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